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Abstract 

 

We formulate a multi-factor real option duopoly game model to determine the optimal times 

to divest the incumbent technology or to switch to a new smaller-scale and lower operating 

cost technology, with an uncertain output price, and declining output. The formulation takes 

two alternative forms: (i) the divest and switch options are treated separately (separate) and (ii) 

the two options are mutually-exclusive (joint). Although the first-mover has a salvage value 

advantage, the second-mover has a temporary market share advantage. The alternative forms 

yield significantly different outcomes: the thresholds are all lower under the separate 

formulation, and hysteresis is greater. When getting out (divest) or getting down, watch the 

competition and sometimes consider the options jointly. 
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Get Out or Get Down: Rival Options in a Declining Market 

Introduction 

We evaluate a real option game in the context of three significant changes: (i) market share 

changes arising from the individual player actions, (ii) revenue changes due to a declining 

market size and a stochastically evolving price, and (iii) net revenue changes arising from 

investing in an alternative technology having a more appropriate cost structure2. 

In markets where output prices are uncertain and output demand is declining, firms often 

consider simultaneously the option to switch to a new smaller-scale technology, benefitting 

thereafter from lower operating costs, and the option to divest. In addition, it is assumed that 

at the moment the firm evaluates the switch/divest problem, the random state variable (e.g., 

revenue) is above the switch threshold, otherwise it would trigger an immediate switch. 

However, Décamps et al. (2006) asked an interesting question: how should firms behave if 

suddenly the state variable is between the divest and switch thresholds? They show that if the 

switch and the divest thresholds are derived separately, the former threshold is lower than the 

latter, and if (by chance) the state variable is in this middle region, both the option to switch 

and the option to divest must coexist. In this scenario, if the state variable increases sufficiently, 

it will trigger the switch, whereas if it decreases enough, it will trigger the divest.  

We note that downscaling during pandemics, change in fashion or technology, or conventional 

usage patterns, may well inspire first movers to switch technology. But who wants to be first, 

adapting to temporary client inertia regarding lower-cost operations (online vs on-campus 

education)? Other contexts are firms, industry or countries facing stagnation or revenue 

decline, due to natural factors such as in petroleum production, and economic or structural 

factors, where possible new alternative technologies may validate delaying exit-abandonment, 

or switching to lower cost production. Due to both pollution concerns and competition from 

natural gas, coal almost everywhere is being shut down, possibly awaiting cheaper emission 

control. Book shops and shopping malls in the US (Borders, and Barnes & Noble) are being 

closed, or converted to alternative uses (cafes and reading rooms, rather than book selling). 

Ceramics and textiles in developed countries faced closure or downsizing. Taxis, 

 
2 Many other configurations of market shares, salvage values, and revenue and operating cost changes can be 

designed, some suitable for our specific model, others requiring model redesign, appropriate for future research. 
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accommodation, and universities are experiencing competition from mobile-digital 

technologies.  

Dias (2004) first raised the mutually exclusive option problem, and provided solutions using 

finite differences. Décamps et al. (2006) study irreversible investments in alternative projects 

and show that when firms hold the option to switch from a smaller scale to a larger scale project, 

a hysteresis region between the investment region can persist even if the uncertainty of the 

output price increases. Bobtcheff and Villeneuve (2010) examine investments in two mutually 

exclusive projects with two sources of uncertainty, and conclude that when these uncertainties 

hold simultaneously, the project payoffs are not sufficient criteria for deciding on the 

investment timing. Kwon (2010) looks at a declining profit stream following an arithmetic 

Brownian motion process, so the exit threshold decreases as volatility increases. Siddiqui and 

Fleten (2010) implement the Décamps et al. (2006) model for mutually exclusive projects with 

an unusual solution.  

Adkins and Paxson (2011) investigate optimal capital replacement and abandonment decisions 

considering that both revenues and costs are uncertain and their value declines over time. 

Chronopoulos and Siddiqui (2015) study the timing of the replacement of an incumbent 

technology, assuming that there is technological uncertainty, and the ex-post revenues which 

the adoption of the new technology generate are uncertain. This investment analysis is 

examined under three different strategies, compulsive, laggard, and leapfrog. Their results 

reveal that, under the compulsive strategy, technological uncertainty has a non-monotonic 

impact on the optimal investment decision.  There are applications of the theory of mutually 

exclusive options, such as Bakke et al. (2016), and of real competitive strategies, such as 

Comincioll et al. (2020), but apparently not joint competitive strategies.  

Hagspiel et al. (2016) look at investment decisions in a new technology under uncertainty in 

profit declining markets, where firms hold the option to invest in a new technology with which 

they produce a new product, holding the option to exit the market and considering that the firms 

also decide on the capacity size. Among other findings, they show that a higher potential 

profitability of the new product market accelerates the investment timing, but the capacity 

choice can alter this result, reversing the above intuitive result, if the choice of the investment 

capacity is smaller.  
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Støre et al. (2018) study an irreversible switch from oil to gas production, with both oil and gas 

production declining over time. They provide analytical solutions for the switching threshold 

and the real option value of the switching opportunity. Huberts et al. (2019) show that entry 

may be deterred, possibly in a war of attrition or pre-emption, following interesting strategies. 

Adkins and Paxson (2019) study the appropriate rescaling for a monopoly from an incumbent 

large-scale technology assuming that market revenue is declining. They also consider the case 

of abandonment and treat the two investments both separately and jointly, showing different 

implications for government policies. 

Several authors focus on the uncertainty of new technologies, which should provide interesting 

extensions of our current approach.  Farzin et al. (1998) assume both the speed of arrival and 

degree of improvement of future technologies are uncertain. Doraszelski (2004) allows for 

future technologies with improvements. Hagspiel et al. (2015) also consider changing arrival 

rates for new technologies.   

We have set up a context where the first-mover advantage is small, dependent on only obtaining 

full salvage value, so some of the option values and thresholds are very sensitive to small 

changes in the ex-post “market share”. These market sharing assumptions constitute quasi-pre-

emptive games, where the second-mover is not immediately motivated to adopt the cost 

reduction technology in the second stage (or perhaps not motivated because of the alternative 

temporary larger market share, maybe a management delusion). Eventually, the second-mover 

is allowed to adopt the new technology (but with an equal market share). Lieberman and 

Montgomery (1988) focus on technological leadership (which we adopt), pre-emption of scarce 

assets, and customer switching costs. Joaquin and Butler (2000) consider the first mover 

advantage of lower operating costs. Tsekrekos (2003) suggests both temporary and pre-emptive 

permanent market share advantages for the leader in a sequential investment pattern. Paxson 

and Pinto (2003) model a leader with an initial market share advantage, which then evolves as 

new customers arrive (birth) and existing customers depart (death). Paxson and Melmane 

(2009) provide a two-factor model where the leader starts with a larger market share, applied 

to show that (by foresight) Google was likely to be undervalued compared to Yahoo at the 

Google IPO. Bobtcheff and Mariotti (2010) consider a pre-emptive game of two innovative 

competitors, whose existence may be revealed only by first mover investment.  See Azevedo 

and Paxson (2014) for a review of the literature on developing real option games. 
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The rest of the paper is organized as follows. Section 2 presents both the divestment and the 

switching models for a separate formulation and a sensitivity analysis. Section 3 derives the 

divestment and the switching models for a joint formulation, and presents a sensitivity analysis. 

Section 4 compares the separate and joint values, and option characteristics. Section 5 

concludes the work and provides some suggestions for further research.  

Section 2 

We consider a duopoly market with two active and ex-ante symmetric rationale firms [holding 

the same parameter values] operating with an incumbent high operating cost technology, 

referred to as policy X , producing the same product output with a market price ( )p t subject 

to uncertainty and facing a declining market volume ( )q t . Due to the inevitable erosion of 

viability, each firm holds the option to abandon production and receive a salvage value from 

the incumbent X stage3. A first-mover divestment advantage exists such that first-mover 

receives the full amount Z  while the second-mover receives only the partial amount Z  where 

0   1  . Once the divestment option is exercised, the firm exits the market which is referred 

to as policy O . Alternatively, each firm can switch while operating X  to a more appropriate 

lower operating cost technology referred to as policy Y , but incurs a positive investment cost 

denoted by K . Since Y  is the more cost efficient, if we denote the full-market operating cost 

by  Jf , J X ,Y  then X Yf f .  The eroding viability inevitably motivates the two players to 

adopt at some future time one of the two policies, O  or Y . Either they will have to “get-out” 

by exiting the business completely, or to “get-down” by switching to policy Y with its more 

efficient cost structure. 

  

The two players in the duopoly game are designated the leader and the follower, referred to as 

L  and F , respectively. This implies that the leader is always first to enact a policy change 

from X  to either O  or Y , and that the follower always enacts the identical policy change as 

the leader but subsequently. The net revenue for each player is determined from their respective 

market share, which is denoted by 
1 2I J ,J

D with  I L,F  and  1 2J ,J O,X ,Y  where 1J  

 
3 Salvage values from spending K (or K1, K2, etc.), and multiple stages, complicate this simple analysis, and are 

not considered. 
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represents the current policy pursued by the leader and 2J  that by the follower. So, 
F Y ,X

D  is 

to be interpreted as the market share of the follower given that the leader is pursuing policy Y  

and the follower policy X . Since their market shares sum to one, 
1 2 1 2

1
L J ,J F J ,J

D D ,+ =  for all 

1J  and all 2J . Clearly, if the leader exits the market, then 0
L O,X

D = . We treat the two firms 

as being ex-ante symmetric, which implies that each firm has 50% of the market provided that 

the two firms are pursuing identical policies, so: 

 
0 5

L X ,X F X ,X L Y ,Y F Y ,Y
D D D D .= = = =

. 

Further, the net revenue for the firms is given by: 

 

( ) ( )

( ) ( )

11 2 1 2

21 2 1 2

if

if

JI J ,J I J ,J

JI J ,J I J ,J

D P t q t D f I L,

D P t q t D f I F.

 −  =

 −  =
 

If the two firms are pursuing the same policy, then their net revenues are identical. The net 

revenue for a firm is zero once it has exited the market. 

 

We assume the market price p  follows a geometric Brownian motion (gBm) process described 

by: 

 ddp pdt p W = + , 

where   is the constant instantaneous conditional expected price change per unit of time,   

is its constant instantaneous conditional standard deviation per unit of time, and dW  is the 

increment of a standard Wiener process. For convergence purposes 0r = −  , where r  is 

the riskless interest rate and  the convenience yield. The market volume flow q  is described 

by:       dq qdt= −  

where 0   denotes a known constant market depletion rate. Under risk-neutrality and using 

Ito’s lemma, the firm value G satisfies the differential equation: 

 ( ) ( )
2

2 2

2

1
0

2
p r p q D pq f r

p p q

G G G
G  

  
+ − − + − − =

  
, (1) 

where for convenience we have ignored the various subscripts; subsequently we particularise 

the various solutions to (1) when we consider the individual cases. Because of the similarity 

principle, Paxson and Pinto (2005), we can replace the composite term for revenue by the single 

variable v pq,=  yielding the solution to (1) as: 
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 ( ) ( )1 2

1 2 for 0 0
D v D f

G v A v A v v v ,
r

 

 
= + + −  

+
 (2) 

where: 

 

2

1,2 1 22 2 2

1 1 2
,

2 2
1, 0,

r r r   
  

  

− − − −   
= −  − +   
 

 
 

 (3) 

1 2 0A ,A   are two unknowns to be determined from the context, and at 0t =  the prevailing 

revenue is defined as ( )0v . In the absence of any optionality or value change due to the other 

player’s action, ( ) ( )G v Dv D f r = + − . 

 

We examine in the following sections the two comparative aspects of the duopoly game. First, 

we consider the aspect that treats the firm decision of selecting between policy O  and Y  as 

being separate and independent by adapting the formulation proposed by Dixit (1993). This is 

referred to as the “separate” formulation; variables and functions associated with this 

formulation are labelled with the subscript I . Since this formulation investigates the impact of 

declining values in revenue on the policy values and the decision thresholds for making a policy 

change, only declining revenues are relevant in this analysis so in (2) 2A  is non-negative but 

1A  is set equal to zero. We then consider the second aspect that treats the selection as being 

“joint” and dependent by adapting the formulation proposed by Décamps et al. (2006). This is 

referred to as the “joint” formulation; variables and functions associated with this formulation 

are labelled with the subscript II . Since this formulation investigates the impact of both 

increasing and decreasing revenue values on the policy values and the decision thresholds for 

making a policy change, both negative and positive revenue changes are relevant so in (2) both 

1 2A A  are non-negative. By comparing these two aspects of the duopoly game, we can 

investigate their key similarities and differences and explain the way they shape policy 

selection for a firm in a declining market. 

 

The separate and joint formulations are assessed by comparing their analytical findings. When 

this is not possible, we use numerical evaluations using base case parameter values that are 

exhibited in Table 1. The values of 1 2,   for the base case are 1 667 1 333. , .− , respectively. 
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Table 1: Base Case Parameter Values 

 

DEFINITION NOTATION VALUE 

Risk-free rate r  0.10 

Convenience yield   0.03 

Market depletion rate   0.04 

Market price volatility   0.30 

Follower’s divestment proportion   0.40 

Unadjusted periodic operating cost for policy X  
Xf  10.0 

Unadjusted periodic operating cost for policy Y  
Yf  1.0 

Divestment value Z  25.0 

Switching investment cost to policy Y  K  32.0 

Leader’s market share given both leader and follower pursue policy X  
L X ,X

D  0.50 

Leader’s market share given both leader and follower pursue policy Y  
L Y ,Y

D  0.50 

Leader’s market share given leader pursues policy Y  and follower policy X  
L Y ,X

D  0.40 

Leader’s market share given leader exits and follower pursues policy X  
L O,X

D  0.00 

   Note: The follower’s market shares for the various policy assortments are obtainable from the leader’s market share. 

Separate Formulation 

In our duopoly game, we implicitly assume that the switching threshold for each player is 

greater than the divestment threshold, and that whichever of the two strategies is selected, the 

leader always moves before the follower. If we denote by ILS IFS
ˆ ˆv ,v  the switching thresholds 

for the leader and follower, respectively, and by ILD IFD
ˆ ˆv , v  the divestment thresholds for the 

leader and follower, respectively, then the assumption on thresholds can be characterized as: 

 ( ) ( )0 0IFS ILS IFD ILD
ˆ ˆ ˆ ˆv v v ,v v v    . (4) 

This is illustrated in Figure 1, which shows that as revenue declines the leader switches and 

divests ahead of the follower. 
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Figure 1 

Leader and Follower Thresholds for a Randomly Declining Revenue v  

Under the Separate Formulation 

 

 

 

Divestment 

The value function for the leader deliberating divestment is denoted by ( )ILDV v  and is derived 

from (2): 

 ( )
( )2

2 for 0

for

X
ILD ILDL X ,X L X ,X

ILD

ILD

fv
ˆD D A v v v v ,

V v r

ˆZ v v .



 


− +  

= +
 

 (5) 

In (5), the first line represents the expected present value of leader’s net revenue plus the option 

value to divest, 2

2ILDA v


 with 2 0ILDA  ; the second line represents the full divestment value. 

The two unknowns, 2ILD ILDv̂ ,A  are obtained from the value-matching relationship and 

associated smooth-pasting condition to yield4: 

 

( )

2

2

2

2

1

2

1

L X ,X

ILD

L X ,X

ILDL X ,X

IL

X

D

D
v̂ ,

D

ˆD

f rZ

r

.
v

A



  



  

−


= 





= 

+

−
+ 

+

−
 (6) 

 

The value function for the follower deliberating divestment is denoted by ( )IFDV v  and is 

derived from (2): 

 
4 Full derivations for the solutions for the separate formulation are available in the Supplementary Appendix A. 
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 ( )

( )2

2

2

2

for 0

for

for

X
IFDD ILDF X ,X F X ,X

X
IFD IFD IFD ILDF O,X F O,X

IFD

fv
ˆD D A v v v v ,

r

fv
ˆ ˆV v D D A v v v v ,

r

ˆZ v v .





 

 




− +   +




= − +  
+





 (7) 

In (7), the first line represents the expected present value of follower’s net revenue plus the 

present value accruing to the follower when the leader exits the market, denoted by 2

2IFDDA v


(note that this present value includes both the net revenue change and the divest option value)5; 

the second line represents the expected present value of follower’s net revenue plus the option 

value to divest, 2

2IFDA v


 with 2 0;IFDA   the third line represents the follower’s partial 

divestment value. The two unknowns, 2IFD IFDv̂ ,A  are obtained from the value-matching 

relationship evaluated at IFD
ˆv v=  and associated smooth-pasting condition, and the unknown 

2IFDDA  from the value-matching relationship evaluated at ILD
ˆv v= , to yield: 

 
( )

( )

2

2

2

2

2 2

2

2

1

1

F O,X

IFD

F O,X

IFDF O,X

IFD

ILD X
IFDD IFD ILDF O,X F X X

X

,

D
v̂ ,

D

ˆD v
A

v̂ f
ˆ

r

v

f r Z

A A D D .
r

,





  



 

 



−

−


= 





= 



 
= + − − 

+  

+



++

−

−  (8) 

Since the follower captures the full market as soon as the leader exits, 
F O,X L X ,X

D D , so

2 0IFDDA   and the follower gains value at ILD
ˆv v= . It can be shown that by comparing (6) with 

(8) the leader is always first to divest because ILD IFD
ˆ ˆv v , since 

F O,X L X ,X
D D  and 1  . 

 
5 Since the A2IFDD is exercised by the rival follower, we also refer to this as a Rival Option RO FDD, similarly for 

the other Rival Options.  
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Switching 

The value function for the leader deliberating switching is denoted by ( )ILSV v  and is derived 

from (2): ( )

( )2

2

2

2

for 0

for

for

X
ILS ILSL X ,X L X ,X

Y
ILS ILSS IFS ILSL Y ,X L Y ,X

Y
IFSL Y ,Y L Y ,Y

fv
ˆD D A v v v v ,

r

fv
ˆ ˆV v D D A v v v v ,

r

fv
ˆD D v v .

r





 

 

 


− +   +




= − +  
+


−  +

 (9) 

In (9), the first line represents the expected present value of leader’s net revenue plus the option 

value to switch, 2

2ILSA v


 with 2 0ILSA  ; the second line represents the expected present value 

of leader’s net revenue plus the present value accruing to the leader when the follower switches, 

denoted by 2

2ILSSA v


; the third line represents the expected present value of leader’s net 

revenue once the follower has switched. 

 

The value function ( )IFSV v  for the follower deliberating switching is: 

 ( )

( )2

2

2

2

for 0

for

for

X
IFSS ILSF X ,X F X ,X

X
IFS IFS IFS ILSF Y ,X F Y ,X

Y
IFSF Y ,Y F Y ,Y

fv
ˆD D A v v v v ,

r

fv
ˆ ˆV v D D A v v v v ,

r

fv
ˆD D v v .

r





 

 

 


− +   +




= − +  
+


−  +

 (10) 

In (10), the first line derived from (2) represents the expected present value of follower’s net 

revenue plus the present value accruing to the follower when the leader switches, denoted by 

2

2IFSSA v


(note that this present value includes both the net revenue change and the switch 

option value); the second line derived from (2) represents the expected present value of 

follower’s net revenue plus the option value to switch, 2

2IFSA v


 with 2 0IFSA  ; the third line 

represents expected present value of follower’s net revenue once both players have switched. 

 

We first consider from (10) the follower’s value-matching relationship at the follower’s 

switching threshold, IFS
ˆv v= : 

 ( )2

2
X Y

IFSF Y ,X F Y ,X F Y ,Y F Y ,Y

f fv v
D D A v D D K Z

r r

 
   

− + = − − −
+ +

. (11) 
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In (11), although paying the full investment cost the follower only receives a partial divestment 

receipt because of the second-mover disadvantage. The two unknowns, 2IFS IFSv̂ ,A , can be 

obtained from (11) and its associated smooth-pasting condition to yield: 

 

( )
( )

2

2

2

2

2

1

1

X

Y

F Y ,X F Y ,Y

IFS

F Y ,X F ,Y

IFSF Y ,X F Y ,Y

IFS

YD D
v̂ ,

D D

ˆD D

f f rK r Z

r

.
v

A



  



  

−


= 

− 


− 
= 

− −

−

−
+ 

++

 (12) 

In (12), the follower’s switching threshold, IFSv̂ , adopts a standard form and is determined from 

the net gain arising from adopting policy Y  by surrendering X ,  the difference between the 

present value of the fixed cost differential and the net investment cost. The threshold also 

imposes the conditions on the follower’s market shares
F Y ,X F Y ,Y

D D , and on the relative fixed 

cost values, switching cost and divestment value. 

 

Next, we consider from (9) the leader’s value-matching relationship at the follower’s switching 

threshold, IFS
ˆv v= : 2

2
IFS Y Y

ILSS IFS IFSL Y ,X L Y ,X L Y ,Y L Y ,Y

v̂ f f
ˆ ˆD D A v D v D

r r



 
− + = −

+
,            (13) 

to derive the coefficient 2ILSSA : 

 ( ) 2

2
IFS Y

ILSS IFSL Y ,Y L Y ,X

v̂ f
ˆA D D v

r



 

− 
= − − 

+ 
. (14) 

From (9), the switching threshold ILSv̂  and option coefficient 2 ILSA  is obtained from the leader’s 

value-matching relationship at the leader’s switching threshold: 

 ( )2 2

2 2
X Y

ILS ILSSL X ,X L X ,X L Y ,X L Y ,X

f fv v
D D A v D D A v K Z

r r

 

   
− + = − + − −

+ +
, (15) 

and its associated smooth-pasting condition to yield: 

 

( )
( )

2 2

2

2

2

2

1

L X ,X L Y ,X

ILS

L X ,X L Y ,X

ILS L X ,X L Y ,X

ILS ILSS

Y

ILS

XD D
v̂ ,

D D

v̂ D D
ˆA

f

A v

f rK rZ

r

.

 





 



−


= 

− 


− 
= −

−

+

− −+



+



 (16) 

In (16), the leader’s switching threshold, ILSv̂ , similarly adopts the standard form and is 

determined from the net gain arising from adopting policy Y  by surrendering X , the difference 
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between the present value of the fixed operating cost differential and the net investment cost. 

The threshold also imposes the conditions on the leader’s market shares
L X ,X L Y ,X

D D , and on 

the relative fixed cost values, switching cost and divestment value. Also, the leader’s switching 

option coefficient, 2 ILSA , is the difference between two positive elements: the first relates to 

the present value accruing to the leader when the follower exercises their switching option, the 

second relates to the leader’s switching option. 

 

Finally, we derive the follower’s coefficient 2FSSA  by considering the follower’s value-

matching relationships at the leader’s switching threshold ILSv̂ . From (10): 

 2 2

2 2
ILS ILSX X

IFSS ILS IFS ILSF X ,X F X ,X F Y ,X F Y ,X

ˆ ˆv vf f
ˆ ˆD D A v D D A v

r r

 

   
− + = − +

+ +
, 

so: ( ) 2

2 2
ILS X

IFSS IFS ILSF Y ,X F X ,X

v̂ f
ˆA A D D v

r



 

− 
= + − − 

+ 
.               (17) 

In (17), the follower’s coefficient is composed of two positive elements: the first is the 

follower’s option switching coefficient and the second relates to the present value accruing to 

the follower arising from a market share increase when the leader exercises its switching 

option6.    

Numerical Evaluations 

Using the base case values in Table 1, we present the numerical solutions for the leader’s and 

follower’s various thresholds and coefficients in Table 2. This reveals that the results meet our 

assumptions underpinning the definitions of the leader and follower as well as the requirements 

as stipulated by Dixit (1993). The switch threshold exceeds the divest threshold for both leader 

and follower, ILS ILD
ˆ ˆv v , IFS IFD

ˆ ˆv v , respectively, the switch option coefficient exceeds the 

divest option coefficient for both leader and follower, 2 2ILS ILDA A , 2IFS IFDA A , respectively, 

the switch and divest thresholds for the leader exceed those for the follower, ILS IFS
ˆ ˆv v , 

ILD IFD
ˆ ˆv v , respectively, and the switch and divest option coefficients for the leader exceed 

those for the follower, 2 2 2ILS IFSS IFSA A A  , 2ILD IFDA A . So, in the context of a randomly 

 
6 All of these value functions, and solutions are consistent with the conventional stochastic discount function 

approach, as shown in the Supplementary Appendix C. 
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declining revenue, the first mover is the leader and switching is the preferred strategy. Table 2 

also reveals that while the coefficients, 2 2 2ILSS IFSS IFDDA ,A ,A , are all positive, 2 2IFDD IFSA A  that 

indicates that the follower’s net revenue change is negative when the leader divests since the 

leader’s net revenue at divestment is negative. The leader’s and follower’s net value (defined 

as the difference between the respective value function and the investment cost if relevant) 

profiles are presented in Figure 2.  NPV indicates the net present value thresholds if no options 

are considered.         Table 2 

Values for the Various Thresholds and Coefficients7 

Under the Separate Formulation 

Leader Follower 

Divest 

ILDv̂  6.000 
IFDv̂  4.400 

2ILDA  350.445 
2IFDA  339.901 

NPV                        10.5 
2IFDDA  262.025 

  NPV                           7.7 

Switch 

ILSv̂  15.600 
IFSv̂  13.200 

2 ILSA  1208.580 
2 IFSA  441.200 

2ILSSA  557.071 
2IFSSA  920.087 

NPV              27.3 NPV     23.1 

 

Figure 2 

Values for the Follower and Leader as a Function of Revenue (v) 

 

 
7 As shown in the Supplementary Appendix Figure E3, A2IFD is important in the lower v range, while A2IFDD is 

significant around the medium v range.  Other significant option values are noted in Figures E4-E5-E6, and E1-

E2 for the joint formulation. 
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Sensitivity Analysis 

In Table 3 we present the percentage change in the thresholds and coefficients for the separate 

model due to a 1% increase in the various parameter values. The results are generally as 

expected for the usual divest/switch options. Notable points are regarding  and .  Changes 

in   only affect the follower’s divestment value and not the leader’s divestment decision nor 

their switching threshold, but positive increments have positive influence on the leader’s 

switching coefficients because of the follower switching earlier. A 1% volatility increase 

postpones both the switch and divest for both the leader and the follower owing to the fall in 

their respective thresholds while making the incumbent appear to be more desirable. While all 

of the option coefficients decline with increased volatility, the divest option values increase 

and the switch option values decreases. 

 

The sensitivity analysis for the players’ market shares naturally excludes that for the follower 

after the leader exits the business. When considering the analysis for the other market shares, 

an absolute increase in the leader’s market share automatically entails an equivalent decrease 

in the market share of the follower. A market share increase for the leader when both the leader 

and follower are pursing the incumbent policy 
L X ,X

D  makes the leader’s current strategy more 

valuable, the follower’s less valuable.  

 

Table 3 reveals that a 1% increase in the leader’s market share 
L X ,X

D  produces a divestment 

deferral and makes the divestment option more expensive due to the leader’s more attractive 

market share. Although it reduces the present value accruing to the follower when the leader 

exits the market because the market share change is less, it has no effect on the follower’s 

divestment threshold and option value, since these are determined by the follower’s market 

share after the leader exits the market. Further, it yields for the leader a switch investment 

deferral and a less expensive switch option because of the greater market share loss. Again, it 

reduces the present value accruing to the follower when the leader switches to policy Y  and 

has no effect on the follower’s switch threshold and option value, since these are determined 

by the follower’s market share after the leader switches. The divestment thresholds and option 

values are not affected by the market shares once the leader switches. An increase in the market 

share for the leader after switching, 
L Y ,X

D , is valuable not only for the leader but also for the 
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follower. The leader gains from the market share increase reflected in an advanced switching 

threshold and greater option value, while the follower shares this gain but to a lesser extent 

through an earlier switching exercise and greater option value. Finally, a 1% increase in market 

share for the leader after the follower switches, 
L Y ,X

D , is unfavourable to the follower because 

of the loss of market share, which is reflected in the follower’s deferred switching and a lower 

option value, but also to the leader to a lesser extent since the market share gain is not attained 

until the follower switches. 

 

These parameter values are not subject to change without limit. As an illustration, the value of  

  is constrained to ensure the leader is the first-mover and the follower the second-mover. 

This implies that ILS IFS
ˆ ˆv v . From (12) and (16), the inequality condition simplifies to: 

 
( )( )1

1 1
X YF Y ,X F X ,X

D D f f
,

rZ


+ − −
 −   

or alternatively as: 

 
( ) ( )1 1

1 1
F X ,X F Y ,X L X ,X L Y ,X

X Y X Y

rZ rZ
D D , D D .

f f f f

 − −
+  + +  −

− −
 

Based on Table 1 values and the first inequality,   can be no greater than 0 64. . To make it 

greater requires a reduction in the follower’s market share after the leader switches, 
F Y ,X

D , a 

smaller differential between the incumbent and alternative technologies fixed cost, X Yf f− , or 

increases in the risk-free rate, r , or divestment value, Z .  

 

Table 3 

Percentage Change in the Thresholds and Coefficients  

due to a 1% Parameter Value Increase for the Separate Formulation 

Panel A exhibits the % changes for the Divestment Opportunity  

and Panel B for the Switch Opportunity 

 

Panel A Leader Follower 

 ILDv̂  2ILDA  IFDv̂  2IFDA  2IFDDA  

r  -0.11% 1.56% -0.35% 0.45% 1.60% 

  0.33% 0.04% 0.33% 0.13% 0.03% 
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  0.44% 0.05% 0.44% 0.17% 0.03% 

  -0.66% -3.60% -0.66% -2.98% -3.68% 

Xf  0.67% 1.56% 0.91% 2.13% 1.60% 

Z  0.33% 0.78% 0.09% 0.21% 0.74% 

  0.00% 0.00% 0.09% 0.21% 0.28% 

L X ,X
D  -0.33% 0.22% 0.00% 0.00% -0.76% 

Note: Changes in Yf , K , 
L Y ,X

D  and 
L Y ,Y

D  have no impact on the 

divestment decision. 

 

Panel B Leader Follower 

 ILSv̂  2 ILSA  2ILSSA  IFSv̂  2 IFSA  
2IFSSA  

r  -0.62% 1.95% 1.86% -1.11% 0.56% 2.17% 

  0.33% -0.33% -0.42% 0.33% -0.19% -0.38% 

  0.44% -0.43% -0.56% 0.44% -0.26% -0.50% 

  -0.66% -6.00% -6.63% -0.66% -5.14% -6.33% 

Xf  1.28% 3.65% 4.40% 1.82% 4.29% 3.75% 

Yf  -0.10% -0.32% -0.42% -0.15% -0.35% -0.34% 

Z  0.64% 1.14% 0.73% 0.30% 0.71% 1.40% 

K  -0.82% -2.09% -2.30% -0.97% -2.25% -2.41% 

  0.00% 0.33% 0.73% 0.30% 0.71% 0.34% 

L X ,X
D  -3.54% -1.87% 0.00% 0.00% 0.00% -3.31% 

L Y ,X
D  4.06% 4.17% 2.79% 2.90% 2.63% 5.78% 

L Y ,Y
D  0.00% -2.87% -6.22% -4.62% -5.97% -2.86% 

 

Section 3 Joint Formulation 

A key assumption underpinning the separate formulation described in §2, adapted from the 

model proposed by Dixit (1993), is that the continuation region lies between the initial revenue 

value ( )0v  and the first encountered policy change threshold. This continuation region, which 

characterizes pursuance of the incumbent policy X , is sometimes referred to as the inaction 
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region. Dias (2004), Décamps et al. (2006) develop the innovative idea of a second inaction 

region lying between a firm’s thresholds to switch to policy Y  and to divest with policy O . 

Normally, we would expect a revenue decline reaching the switching threshold to trigger a 

policy change from X  to Y . Here, we are assuming that the revenue has declined below the 

switching threshold either because policy Y  was not known or not available at the relevant 

time.  

 

The nature of the duopoly game is that the leader always commits to a policy change ahead of 

the follower. Further, for the current context, the switch threshold is always greater than the 

divestment threshold, Décamps et al. (2006). Under the joint formulation, we denote the 

switching thresholds for the leader and follower by IILS IIFS
ˆ ˆv , v , respectively, the divestment 

thresholds for the leader and follower by IILD IIFD
ˆ ˆv , v  , respectively, then the thresholds’ order of 

magnitude is accordingly: 

 IIFD IILD IILS IIFS
ˆ ˆ ˆ ˆv v v v   . 

Since the leader enacts a policy change ahead of the follower, the inaction region lies between 

the leader’s thresholds to change policy from X  to Y  and O . Since the initial revenue value 

( )0v  lies within this inaction region, then: 

 ( )0IIFD IILD IILS IIFS
ˆ ˆ ˆ ˆv v v v v    . (18) 

This is illustrated in Figure 3, which shows that sufficiently high increases and decreases in 

revenue inevitably results in the leader exercising the option to switch to policy Y  and to divest 

in policy O, respectively. 

 

Figure 3 

Leader and Follower Thresholds for a Randomly Declining Revenue v  

Under the Joint Formulation 
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The value function under the joint formulation for the leader is denoted by ( )IILV v  and is 

derived from (2): 

 ( )
1

1 2

1

1 2

for

for

for

for

Y
IIFSL Y ,Y L Y ,Y

Y
IILSS IILS IIFSL Y ,X L Y ,X

IIL

X
IILS IILD IILD IILSL X ,X L X ,X

IILD

fv
ˆD D v v

r

fv
ˆ ˆD D A v v v v ,

V v r

fv
ˆ ˆD D A v A v v v v ,

r

ˆZ v v .



 

 

 

 


−  +


 − +  

= +


− + +  
+

 

 (19) 

In (19), the first line represents the expected present value of leader’s net revenue once the 

follower has switched; the second line represents the expected present value of leader’s net 

revenue plus the present value accruing to the leader when the follower switches, denoted by 

2

1IILSSA v


; the third line represents the expected present value of leader’s net revenue plus the 

option values to switch, 1

1IILSA v


 with 1 0IILSA   and to divest, 2

2IILDA v


 with 2 0IILDA  ; the 

fourth line represents the leader’s receipt from divesting the incumbent policy.  

 

The value function under the joint formulation for the follower is denoted by ( )IIFV v  and is 

derived from (2): 

 ( )

1 2

1 2

1 2

1

1 2

1 2

1 2

1

for

for

for

Y
IIFSF Y ,Y F Y ,Y

X
IIFS IIFD IILS IIFSF Y ,X F Y ,X

X
IIFS IIFDF X ,X F X ,XIIF

IIFSS IIFDD IILD IILS

X
IIFSF O,X F O,X

fv
ˆD D v v

r

fv
ˆ ˆD D A v A v v v v ,

r

fv
D D A v A vV v

r

ˆ ˆA v A v v v v ,

fv
D D A v

r

 

 

 



 

 

 

 

− 
+

− + +  
+

− + +=
+

+ +  

− + +
+

2

2 for

for

IIFD IIFD IILD

IIFD

ˆ ˆA v v v v ,

ˆZ v v .
















  

 

 (20) 

In (20), the first line represents the expected present value of follower’s net revenue once the 

follower has switched; the second line represents the expected present value of follower’s net 

revenue plus the sum of the option values to switch, 1

1IIFSA v


 with 1 0IIFSA  , and to divest, 

2

2IIFDA v


 with 2 0IIFDA  ; the third line represents the expected present value of follower’s net 

revenue plus the sum of the option values to switch, 1

1IIFSA v


, and to divest, 2

2IIFDA v


, and the 
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sum of the present values (gains or losses) accruing to the follower when the leader switches, 

1

1IILSSA v


, and when the leader divests, 2

2IIFDDA v


(note that we have separated  the follower’s 

option value from the present value accruing to the follower to add clarity when discussing the 

results, but of course the two terms could be composited as a single term); the fourth line 

represents the expected present value of follower’s net revenue plus the sum of the option 

values to switch, 1

1IIFSA v


, and to divest, 2

2IIFDA v


; the fifth line represents the follower’s value 

on divestment.  

 

In (19) and (20), the generic term Av
 has two interpretations. First, it can refer to the value 

of an option, which can be exercised specifically by a single player to change policy from X  

to Y  or O . Second, it can refer to the present value accruing to one player when the other 

exercises their option to change the incumbent policy. There are three occasions when this 

happens: (i) when the follower switches to Y , the leader benefits from a gain in market share; 

(ii) when the leader switches to Y , and (iii) when the leader switches to O , the follower 

experiences a gain in market share. These three occasions mirror those for the separate 

formulation. 

 

Together, (19) and (20) create a set of  equations from which the solutions to the unknown 

thresholds and coefficients are obtainable. There are four unknown thresholds signalling the 

leader’s and follower’s switching and divesting policies, IILS IIFS IILD IIFD
ˆ ˆ ˆ ˆv ,v ,v ,v , respectively, 

four unknown option coefficients associated with the leader’s and follower’s switching and 

divesting policies, 1 2 1 2IILS IILD IIFS IIFDA ,A ,A ,A , respectively, and three unknown coefficients 

associated with the leader’s present value accruing when the follower switches, 1IILSSA , with 

the follower’s present value accruing when the leader switches, 1IIFSSA , and divests, 2IIFDDA , 

making a total of eleven in all. There are eleven equations for solving the unknowns. There are 

four value-matching relationships occurring when the leader and the follower switch and 

divest, respectively, the four associated smooth-pasting conditions reflecting optimality, the 
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value-matching relationship for the leader occurring when the follower switches, and the two 

for the follower occurring when the leader switches and divests8. 

 

There exist two value matching relationships for the follower, occurring at the switching and 

divesting thresholds, IIFS IIFD
ˆ ˆv , v , respectively. So, from (20) we have: 

 ( )

1 2

1 2

1 2

1 2

IIFS X
IIFS IIFS IIFD IIFSF Y ,X F Y ,X

IIFS Y

F Y ,Y F Y ,Y

IIFD X
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r
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D D K Z ,

r
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r
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 
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
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
 


− + + +




= − − − 
+ 


− + + = + 

 (21) 

From (21) and its associated smooth-pasting condition, we can obtain9 solutions for the 

follower’s two thresholds IIFS IIFD
ˆ ˆv , v from the non-linear simultaneous equations: 
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 (22) 

The follower’s switching and divestment option coefficients are, respectively: 

 

2 2

1 1

1

1
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IIFS IIFS IIFD IIFD IIFS
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 (23) 

where 1 2 2 1

F IIFS IIFD IIFS IIFD
ˆ ˆ ˆ ˆv v v v
   

 = − . From (23), we expect 1 2IIFS IIFDA ,A  to be both positive. 

 
8 These joint value functions and the associated solutions can be represented in the conventional SDF approach 

as shown in the Supplementary Appendix C. 
9 Full derivations for the solutions for the joint formulation are available in the Supplementary Appendix B. 
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Now that the follower’s switching threshold IIFS
ˆv v=  is known, we can deduce the impact of 

the follower switching on the leader’s net return of operating policy Y , as denoted by 

2

1IILSSA v .


 From (19), the leader’s value-matching relationship defined at IIFS
ˆv v=  is: 

 1

1
IIFS IIFSY Y

IILSS IIFSL Y ,X L Y ,X L Y ,Y L Y ,Y

ˆ ˆv vf f
ˆD D A v D D

r r



   
− + = −

+ +
. 

This yields the unknown coefficient 1IILSSA : 

 ( ) 1

1
IIFS Y

IILSS IIFSL Y ,Y L Y ,X

v̂ f
ˆA D D v

r



 

− 
= − − 

+ 
. (24) 

From (24), we expect 1IILSSA  to be positive. 

 

There exist two value matching relationships for the leader, occurring at the switching and 

divesting thresholds, IILS IILD
ˆ ˆv ,v , respectively. So, from (19) we have: 
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From (25) and its associated smooth-pasting condition, we can obtain solutions for the leader’s 

two thresholds IILS IILD
ˆ ˆv ,v from the non-linear simultaneous equations: 
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The leader’s switching and divestment option coefficients are, respectively: 
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 (27) 

where 1 2 2 1

L IILS IILD IILS IILD
ˆ ˆ ˆ ˆv v v v
   

 = − . From (27), we expect 1 2IILS IILDA ,A  to be both positive. 

 

Finally, the coefficients 1 2IIFSS IIFDDA , A  of 1 2

1 2IIFSS IIFDDA v , A v
 

 representing  the present value 

accruing to the follower when the leader changes policy from X  to Y  and O , respectively, 

are obtainable from the follower’s two value-matching relationships (20) defined at IILS
ˆv v=  

and IILD
ˆv v= , respectively: 
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1 2

1 2
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ˆ ˆD D D D A v A v ,

r r

ˆ ˆv f v f
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r r

 

 

   

   


− = − + + + +


− = − + +
+ + 

 (28) 

The solutions are: 
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 (29) 

From (29), it is not possible to demonstrate definitively the signs of 1 2IIFSS IIFDDA ,A . 

Numerical Evaluations 

Using the base case values in Table 1, we present the numerical solutions for the leader’s and 

follower’s various thresholds and coefficients in Table 4. This reveals that our results for the 

duopoly model meet the conditions as prescribed by Décamps et al. (2006) for the monopolistic 

context. The thresholds yielded by the joint formulation are always less than those under the 

separate formulation, IILD ILD
ˆ ˆv v , IILS ILS

ˆ ˆv v , IIFD IFD
ˆ ˆv v , IIFS IFS

ˆ ˆv v . Also, the leader is the 

first-mover since IIFD IILD IILS IIFS
ˆ ˆ ˆ ˆv v v v   . Over the range IILD IILS

ˆ ˆv v v  , the respective 
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coefficients for 1v


 and 2v


 are greater for the leader than for the follower since 

2 2 2IILS IIFS IIFSSA A A +  and 2 2IILD IIFD IIFDDA A A + . This implies that the leader is the first-mover 

owing not only to the relative threshold sizes but also to the leader having the greater value. 

This is revealed in Figure 4, which profiles the leader’s and follower’s net value (defined as 

the difference between the respective value function and the investment cost if relevant) and 

shows the leader to have a greater net value the follower over the specified range. Finally, we 

observe that while 2IILSSA  and 2IIFSSA  are both positive, 2IIFDDA  is negative. This indicates that 

while the leader gains when the follower switches and the follower gains when the leader 

switches, the follower loses when the leader divests. This arises because the leader is 

experiencing a negative net revenue at their divestment threshold, so the follower is accepting 

an additional loss due to their market share gain. This echoes the finding for the separate 

formulation.         Table 4 

Values for the Various Thresholds and Coefficients 

Under the Joint Formulation 

Leader Follower 

Divest 

IILDv̂  4.524 
IIFDv̂  4.328 

2IILDA  258.016 
2IIFDA  334.144 

  
2IIFDDA  -182.405 

Switch 

IILSv̂  6.948 
IIFSv̂  10.206 

1IILSA  0.6628 
1IIFSA  0.0693 

1IILSSA  0.2828 
1IIFSSA  0.5409 

Figure 4 

Follower and Leader Net Values as a Function of Revenue (v) 
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Sensitivity Analysis 

In Table 5 we present the percentage change in the thresholds and coefficients for the joint 

model due to a 1% increase in the various parameter values. Overall, the results are as expected. 

A 1% volatility increase produces deferrals in exercising both the switch and divestment 

options for both the leader and the follower, together with falls in the usual divest and switch 

option coefficients, but the rival switching option coefficients increase with volatility, in 

contrast to the separate formulation.  

 

Changes in   should seemingly only affect the follower, with a positive change being seen as 

attractive. A 1% increase leads to advancing both the divestment and switching decisions for 

the follower and rises in the respective option values. For the leader, an increase in   postpones 

the divestment decision and lowers the respective option value but advances the switch 

decision, and raises the respective option value by a very small amount. 

 

Increases in the leader’s market share and the consequential decrease in the follower’s market 

share could be interpreted as being attractive for the leader at the detriment to the follower. 

Table 5 shows that an increase in the leader’s market share when pursuing policy X ,
L X ,X

D ,  

makes the divestment opportunity more attractive for the leader and leads to an earlier exercise, 

while making the switch opportunity less attractive but also leading to an earlier exercise. It 

has, though, no impact on the follower’s strategy since the divestment and switch opportunities 

only become available after the leader has divested and switched, respectively, except for the 

positive change in the follower’s present accrued value when the leader divests because of the 

greater gain in market share. 

 

If the market share after switching for the leader, 
L Y ,X

D ,  increases, then policy Y  for the leader 

becomes more attractive. This is revealed in a less attractive divestment opportunity for the 

leader with a later exercise and a more attractive switch opportunity with an earlier exercise. 

Further, there is a fall in the present value accruing to the leader when the follower switches 

because the leader’s market share gain is less. The switching opportunity for follower also 

becomes more attractive with a deferred threshold because the loss in the follower’s market 

share becomes less. Also, there is an increase in the present value accruing to the follower when 

the leader switches because of the gain in the follower’s market share.  
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Once both parties have switched, an increase in the leader’s market share, 
L Y ,Y

D , makes the 

leader’s switching opportunity more attractive with an earlier exercise and their divesting 

opportunity less attractive with a later exercise. Also, the increase in market share produces an 

increased present value accruing to the leader when the follower switches. In contrast, the 

follower’s switch opportunity becomes significantly less desirable with a deferred exercise 

owing to the greater decrease in market share, but the follower’s divest opportunity becomes 

more desirable with an earlier exercise. Finally, there is an increase in the present value 

accruing to the follower when the leader switches. 

 

Table 5 

Percentage Change in the Thresholds and Coefficients  

due to a 1% Parameter Value Increase for the Joint Formulation 

Panel A exhibits the % changes for the Divestment Opportunity  

and Panel B for the Switch Opportunity 

 

Panel A Leader Follower 
 

IILDv̂  2IILDA  IIFDv̂  2IIFDA  2IIFDDA  

r  -0.12% 1.06% -0.35% 0.42% 0.00% 

  0.58% 0.34% 0.48% 0.22% 0.06% 

  0.43% 0.25% 0.36% 0.16% 0.04% 

  -0.31% -2.76% -0.53% -2.82% -3.20% 

Xf  0.18% 1.01% 0.75% 1.97% 2.99% 

Yf  0.09% 0.10% 0.03% 0.03% -0.10% 

Z  0.08% 0.50% 0.05% 0.17% 0.21% 

K  0.64% 0.72% 0.17% 0.17% -0.75% 

  -0.01% -0.01% 0.05% 0.17% 0.00% 

L X ,X
D  0.09% 0.70% 0.00% 0.00% 1.16% 

L Y ,X
D  -0.09% -0.10% -0.10% -0.10% 0.27% 

L Y ,Y
D  -0.53% -0.60% 0.36% 0.37% 0.08% 
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Panel B Leader Follower 
 

IILSv̂  1IILSA  1IILLSA  IIFSv̂  1IIFSA  1IIFSSA  

r  -0.27% 1.21% 1.73% -0.85% 0.86% -1.05% 

  0.68% -2.41% -2.19% 0.76% -3.74% -2.08% 

  0.51% -1.81% -1.64% 0.57% -2.82% -1.56% 

  0.50% -0.11% 1.04% 1.16% -7.01% 1.02% 

Xf  -0.34% 1.87% 0.13% -0.21% 9.12% 3.08% 

Yf  0.18% -0.44% -0.19% 0.19% -1.62% -0.50% 

Z  -0.18% 0.96% 0.10% -0.17% 2.22% 0.61% 

K  1.36% -3.02% -0.72% 1.23% -10.30% -3.73% 

  -0.01% 0.06% 0.10% -0.17% 2.22% 0.03% 

L X ,X
D  -0.13% -0.79% 0.00% 0.00% 0.00% 1.44% 

L Y ,X
D  -0.36% 0.43% -4.26% 0.46% 5.98% 1.13% 

L Y ,Y
D  -0.49% 2.53% 4.29% 1.15% -22.00% 1.21% 

Section 4 Comparing the Separate and Joint Solutions 

The separate and joint formulations of §2 and §3 share common features, representing a 

duopoly game involving a leader and a follower facing an inevitable revenue decline and 

deliberating between divesting and switching to a more appropriate technology in place of the 

incumbent high operating cost strategy, each having 11 equations and 11 unknowns10. Further, 

we assume that switching is the preferred choice, and the leader is always the first-mover. But 

the two formulations have a significant difference in the location of the initial revenue value. 

For the separate formulation, this creates a recursively solved model involving only put-style 

options, but a more complex model structure for the joint formulation involving both call- and 

put-style options, with significantly different findings. 

 

 
10 As shown in the Supplementary Appendix D, the joint solution is economically reduced to just solving 4 

equations for the 4 thresholds. 
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In the standard model, a volatility increase is known to make both the investment opportunity 

and the divestment opportunity more attractive with a deferred exercise. By being composed 

of only put options, the effect of a volatility increase for the separate formulation is 

straightforward and predictable. In contrast, the combination of call and put options implies 

the solution to the joint formulation cannot be derived recursively, and the effect of a volatility 

increase is possibly less straightforward and less predictable11.  

Section 5 Conclusion 

Is a joint formation model feasible, with a solution using joint option coefficients, which should 

be consider in mutually-exclusive option contexts? Are the results using a joint formulation 

model significant in capital budgeting, that is are the thresholds justifying immediate action 

(divestment, or switching in our case) different from using the separate formulation? Can the 

joint formulation be extended to a duopoly with first mover advantages? What is the role of the 

Rival’s Options used herein?  

We conclude that: i) the joint formulation with option coefficients and thresholds is feasible 

and perhaps should be considered in many other contexts; ii) the action thresholds for capital 

budgeting for mutually-exclusive opportunities are 1/2 or 3/4 of those determined using 

conventional real option theory, while the separate thresholds are 57% of the NPV, except for 

the follower divest ; iii) extending the joint formulation to a duopoly is feasible and interesting, 

and introduces market share sensitivities for both option coefficients and thresholds; and iv) 

the Rival Options are a novel concept with interesting implications, offering new perspectives 

on capital budgeting and management. 

There are extensions for the partial derivatives of all of the formulation thresholds and option 

coefficients, with plausible illustrations (and indicated hedging opportunities). This joint 

formulation approach might be used for many other mutually-exclusive option contexts, with 

different configurations of switch opportunities and costs, market shares and sequential real 

option games. The topic of rival options seems to us a fertile area for future research. 

 
11 The supplementary Appendix F shows the complexity of the effect of increasing volatilities on the option 

coefficients and the option values at some specific v levels, above and between the thresholds, for the separate 

and joint formulation models.   
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